- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Acikgoz, Muhammed (3)
-
Harrell, Jaren (3)
-
Pavanello, Michele (3)
-
Genova, Alessandro (2)
-
Chawla, Rupali (1)
-
He, Huixin (1)
-
Khoshi, M. Reza (1)
-
Lieber Sasson, Hela (1)
-
Visoly-Fisher, Iris (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Acikgoz, Muhammed; Khoshi, M. Reza; Harrell, Jaren; Genova, Alessandro; Chawla, Rupali; He, Huixin; Pavanello, Michele (, Physical Chemistry Chemical Physics)Tuning the electronic properties of oxide surfaces is of pivotal importance, because they find applicability in a variety of industrial processes, including catalysis. Currently, the industrial protocols for synthesizing oxide surfaces are limited to only partial control of the oxide's properties. This is because the ceramic processes result in complex morphologies and a priori unpredictable behavior of the products. While the bulk doping of alumina surfaces has been demonstrated to enhance their catalytic applications ( i.e. hydrodesulphurization (HDS)), the fundamental understanding of this phenomenon and its effect at an atomic level remain unexplored. In our joint experimental and computational study, simulations based on Density Functional Theory (DFT), synthesis, and a variety of surface characterization techniques are exploited for the specific goal of understanding the structure–function relationship of phosphorus-doped γ-Al 2 O 3 surfaces. Our theoretical calculations and experimental results agree in finding that P doping of γ-Al 2 O 3 leads to a significant decrease in its work function. Our computational models show that this decrease is due to the formation of a new surface dipole, providing a clear picture of the effect of P doping at the surface of γ-Al 2 O 3 . In this study, we uncover a general paradigm for tuning support–catalyst interactions that involves electrostatic properties of doped γ-Al 2 O 3 surface, specifically the surface dipole. Our findings open a new pathway for engineering the electronic properties of metal oxides’ surfaces.more » « less
-
Harrell, Jaren; Acikgoz, Muhammed; Lieber Sasson, Hela; Visoly-Fisher, Iris; Genova, Alessandro; Pavanello, Michele (, The Journal of Physical Chemistry C)
An official website of the United States government
